

Your Signature
\square

Student ID \#

Honor Statement

I agree to complete this exam without unauthorized assistance from any person, materials, or device.

Signature: \qquad

- Turn off all cell phones, pagers, radios, mp3 players, and other similar devices.
- This exam is closed book. You may use one $8.5^{\prime \prime} \times 11^{\prime \prime}$ sheet of handwritten notes (both sides OK). Do not share notes. No photocopied materials are allowed.
- Only the TI 30X IIS calculators is allowed.
- In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- If you need more room, use the backs of the pages and indicate that you have done so.
- Raise your hand if you have a question.
- This exam has 7 pages, plus this cover sheet. Please make sure that your exam is complete.

Question	Points	Score
1	24	
2	8	
3	10	
4	10	
5	8	
Total	60	

1. (24 points) Indicate whether the given statement is true or false (1 pts) and give justification as to why it is true or false(2 pts).
a) [4 pts] If S is a subspace of \mathbb{R}^{8} and $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{7}\right\}$ is a basis for S, then for any $\vec{v} \notin S$, $\operatorname{span}\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{7}, \vec{v}\right\}=\mathbb{R}^{8}$.

TRUE. If $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{7}\right\}$ is a basis for S, then $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{7}\right\}$ is linearly independent. Since $\vec{v} \notin S, \vec{v}$ is not in the span of the \vec{u}_{i}, which means that $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{7}, \vec{v}\right\}$ is a linearly independent set in \mathbb{R}^{8}, hence spans \mathbb{R}^{8}.
b) [4 pts] Let B_{1}, B_{2}, and B_{3} be bases for \mathbb{R}^{n}. If C_{1} is the change of basis matrix going from B_{1} to B_{2}, and C_{2} is the change of basis matrix going from B_{2} to B_{3}, then $C_{2}^{-1} C_{1}^{-1}$ is the change of basis matrix going from B_{3} to B_{1}.

FALSE. If C_{1} is the change of basis matrix going from B_{1} to B_{2}, and C_{2} is the change of basis matrix going from B_{2} to B_{3}, then $C_{2} C_{1}$ is the change of basis matrix going from B_{1} to B_{3}, hence it's inverse goes from B_{3} to B_{1}. By shoes and socks, the inverse is given by $\left(C_{2} C_{1}\right)^{-1}=C_{1}^{-1} C_{2}^{-1}$.
c) [4 pts] If W is a subspace of $\mathbb{R}^{9}, \operatorname{dim}(W)=3$, and $T: \mathbb{R}^{9} \rightarrow \mathbb{R}^{6}$ is a linear transformation such that $\operatorname{Ker}(T)=W$, then T must be onto.

TRUE. By the rank-nullity theorem, we know that $\operatorname{dim}(\operatorname{range}(T))+\operatorname{dim}(\operatorname{ker}(T))=9$. Since $\operatorname{ker}(T)=W$ and $\operatorname{dim}(W)=3, \operatorname{dim}(\operatorname{ker}(T))=3$. This means that $\operatorname{dim}(\operatorname{range}(T))+3=9$ which implies that $\operatorname{dim}(\operatorname{range}(T))=6$. Since the codomain is $\mathbb{R}^{6}, \operatorname{dim}(\operatorname{range}(T))=6$ implies that T is onto.

Give an example of each of the following. If it is not possible write "NOT POSSIBLE", and give justification as to why.
g) [2 pt] An $n \times n$ matrix $A \neq I_{2}$ such that $A^{2018}=I_{2}$, but $A^{k} \neq I_{2}$ for all $k<2018$..

Take a rotation matrix for $\theta=\frac{2 \pi}{2018}$, this looks like

$$
C_{\frac{2 \pi}{2018}}=\left[\begin{array}{cc}
\cos \left(\frac{2 \pi}{2218}\right) & -\sin \left(\frac{2 \pi}{2018}\right) \\
\cos \left(\frac{2 \pi}{2018}\right) & \sin \left(\frac{2 \pi}{2018}\right)
\end{array}\right]
$$

Since rotating through an angle of $\frac{2 \pi}{2018}, 2018$ times will get you back where you started, $\left(C_{\frac{2 \pi}{2018}}\right)^{2018}=I_{2}$. Note that one can also just say $A=\left[\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right]$ where $x^{2018}=1$.
h) [2 pt] A linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that range $(T)=\operatorname{ker}(T)$.

Recall from class that when you look at a 2×2 matrix, the columns are reading off the image of the standard basis vectors. By rank-nullity, $\operatorname{dim}(\operatorname{range}(T))+\operatorname{dim}(\operatorname{ker}(T))=2$, so range (T) and $\operatorname{ker}(T)$ must both be 1-dimensional. Lets pick a subspace and make it work. Picking the x or y axis will be easiest so lets pick the subspace to be $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$, the x-axis. If I want the range AND kernel to be this subspace, I must send $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ to $\left[\begin{array}{l}0 \\ 0\end{array}\right]$, to get the kernel. Moreover, I must send the other vector to $\left[\begin{array}{l}1 \\ 0\end{array}\right]$, to get the range. The matrix that does this is $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. To see it more explicitly, reaidng off from the columns of the matrix shows that e_{1} will go to the zero vector, and e_{2} will go to e_{1} (because column 2 of the matrix is e_{1}. Now looking at any arbitrary vector, we can see that any vector of the form $\left[\begin{array}{l}a \\ 0\end{array}\right]$ will go to the zero vector, and any vector of the form $\left[\begin{array}{l}0 \\ b\end{array}\right]$ will go to $\left[\begin{array}{l}b \\ 0\end{array}\right]$. This means that anything on the x -axis goes to zero and anything on the y-axis goes to the x -axis, which is tha same as $\operatorname{ker}(T)=\operatorname{range}(T)=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right.$. Note: There are certainly other choices that work and just writing a matrix that works is sufficient for full credit.
i) $[2 \mathrm{pts}]$ A basis B for \mathbb{R}^{3} such that every vector in the basis lies in the set $\left\{\left[\begin{array}{l}a \\ b \\ c\end{array}\right]: a+b+2 c=0\right\}$

NOT POSSIBLE. The set $\left\{\left[\begin{array}{l}a \\ b \\ c\end{array}\right]: a+b+2 c=0\right\}$ forms a plane in \mathbb{R}^{3}. If this set were a basis then it would imply that a plane spans \mathbb{R}^{2} but a plane can never span all of \mathbb{R}^{3}.
2. (10 points) Consider the matrix A, and it's reduced echelon form below

$$
A=\left[\begin{array}{ccccc}
2 & -6 & 14 & 4 & 18 \\
-1 & 6 & -19 & 4 & -6 \\
-2 & 7 & -18 & 1 & -11 \\
3 & -8 & 17 & 3 & 18
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & -5 & 0 & -4 \\
0 & 1 & -4 & 0 & -3 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

a) [3 pts$]$ Find a basis for $\operatorname{Col}(A)$, the column space of A.

By recipe 2, the pivot columns in the reduced echelon form occur in columns 1,2 and 4 , so looking back at matrix A, we have that

$$
B_{\operatorname{col}(A)}=\left\{\left[\begin{array}{c}
2 \\
-1 \\
-2 \\
3
\end{array}\right],\left[\begin{array}{c}
-6 \\
6 \\
7 \\
-8
\end{array}\right],\left[\begin{array}{l}
4 \\
4 \\
1 \\
3
\end{array}\right]\right\}
$$

b) $[3 \mathrm{pts}]$ Find a basis for $\operatorname{Null}(A)$, the Null space of A.

Looking at the linear system corresponding to the reduced echelon matrix, we see that the free variables correspond to x_{3} and x_{5}, so let $x_{3}=s_{1}$ and $x_{5}=s_{2}$. The remaining equations are then

$$
x_{1}-5 s_{1}-4 s_{2}=0 ; \quad x_{2}-4 s_{1}-3 s_{2}=0 ; \quad x_{4}+2 s_{2}=0
$$

This means that

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
5 s_{1}+4 s_{2} \\
4 s_{1}+3 s_{2} \\
s_{1} \\
-2 s_{2} \\
s_{2}
\end{array}\right]=s_{1}\left[\begin{array}{l}
5 \\
4 \\
1 \\
0 \\
0
\end{array}\right]+s_{2}\left[\begin{array}{c}
4 \\
3 \\
0 \\
-2 \\
1
\end{array}\right]
$$

so

$$
B_{N u l l(A)}=\left\{\left[\begin{array}{l}
5 \\
4 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
4 \\
3 \\
0 \\
-2 \\
1
\end{array}\right]\right\}
$$

c) [2 pts] Find a basis for $\operatorname{row}\left(A^{T}\right)$, the row space of A^{T}.

Since the rows of A^{T} are just the columns of $A, \operatorname{row}\left(A^{T}\right)=\operatorname{col}(A)$, hence the basis is the same as in part a).
3. (10 points) a) [5 pts] Consider the set $S=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]: x^{2}+y^{2}+z^{2} \leq 1\right\}$ Determine if S is a subspace of \mathbb{R}^{3}. If it is, carefully show that it is a subspace. If it is not, give justification as to why.

Algebraic Solution: S is not a subspace because it isn't closed under scalar multiplication nor vector addition. The easiest way to see this is via scalar multiplication. Given $\vec{v}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in S$ take any scalar $c>1$, then $(c x)^{2}+(c y)^{2}+(c z)^{2}=c^{2}\left(x^{2}+y^{2}+z^{2}\right)$ and since $x^{2}+y^{2}+z^{2} \leq 1$, $c^{2}\left(x^{2}+y^{2}+z^{2}\right) \leq c^{2} \not \leq 1$. This means that $c \vec{v} \notin S$, so S is not a subspace. S is also not closed under vector addition, as can easily be seen by considering (among others) the vectors $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. Both are in S but their vector sum is not.
Geometric Solution: S is a sphere of radius 1 in \mathbb{R}^{3}. Since any vector whose tip is on the boundary of the sphere can be scaled to strech outside of the sphere, a scaled version of any vector in S will not necessarily remain in S.
b) [5 pts] Let A be an non-zero $n \times n$ matrix and consider the set $S=\left\{x \in \mathbb{R}^{n}: A \vec{x}=\vec{x}\right\}$. That is, for some fixed matrix A, S consists of all vectors in \mathbb{R}^{n} that are fixed by A. Show that S is a subspace of \mathbb{R}^{n}. (Note: You may use the definition or any theorems from class.)

Solution 1: Recall that for any matrix $A, \operatorname{Null}(A)$ is automatically a subspace. Keeping this fact in mind, we can see that if $A \vec{x}=\vec{x}$, then $A \vec{x}-I_{n} \vec{x}=\left(A-I_{n}\right) \vec{x}=\overrightarrow{0}$. This means that $S=\operatorname{Null}\left(A-I_{n}\right)$. Since S is the nullspace of some matrix, it is a subspace.

Solution 2: We check the 3 subspace conditions starting with the first. It's easy to see that $\overrightarrow{0} \in S$ because $\overrightarrow{A 0}=\overrightarrow{0}$.
Now let $\vec{x} \in S$ and let c be a scalar. Then

$$
A c \vec{x}=c(A \vec{x})=c(\vec{x})=c \vec{x}
$$

so $c \vec{x} \in S$ and S is closed under scalar multiplication.
Lastly, let $\vec{x}, \vec{y} \in S$. This means that $A \vec{x}=\vec{x}$ and $A \vec{y}=\vec{y}$, since A is linear, we have

$$
A(\vec{x}+\vec{y})=A \vec{x}+A \vec{y}=\vec{x}+\vec{y}
$$

hence $\vec{x}+\vec{y} \in S$, and S is closed under vector addition.
c)[4pts] Given the set S from part b), find a basis of S for the matrix $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$

We will approach this problem from the nullspace perspective but mention that one can solve this by letting $\vec{x}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ be an arbitrary and writing out equations in terms of a, b, and c, then solving.

Since $S=\operatorname{Null}\left(A-I_{n}\right)$, here we have $n=3$ and

$$
A-I_{3}=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]-\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

The linear system this corresponds to is given by

$$
-x_{1}+x_{2}+x_{3}=0 \text { and } x_{1}=0
$$

This means that x_{3} is free, hence $x_{3}=s$ and $x_{2}=-s$. Since $S=\operatorname{Null}\left(A-I_{3}\right)$, a basis for S is just a basis for this null space. We can now see that any vector in this null space has the form $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=s\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$ hence

$$
B_{S}=\left\{\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]\right\}
$$

4. (10 points) a) [5 pts] Define linear transformations $T_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, S_{B}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, and $R=(T \circ S): \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with $T_{A}(\vec{x})=A \vec{x}$ and $S_{B}(\vec{x})=B \vec{x}$ for $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -3\end{array}\right]$ and $B=\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$. Show that T and S are invertible. (Note: Even though matrix B is the same as in the previous problem, they are unrelated.)
T and S are invertible $\Leftrightarrow \operatorname{det}(A) \neq 0$ and $\operatorname{det}(B) \neq 0$. It's easy to see that $\operatorname{det}(A)=(2)(-1)(3)=$ -6 , and computing the cofactor expansion along the first column shows that $\operatorname{det}(B)=1(-1)=$ -1 , hence T and S are invertible.
b) [5 pts] Determine a matrix C such that $R^{-1}(\vec{x})=(T \circ S)^{-1}(\vec{x})=C \vec{x}$.

Since matrix multiplication and function composition are the same, $(T \circ S) \vec{x}=A B \vec{x}$. This means that $(T \circ S)^{-1}$ has associated matrix $(A B)^{-1}=B^{-1} A^{-1}$, and this is the matrix we must find. Since the product of diagonal matrices is just the product of diagonal entries, we can easily see that

$$
A^{-1}=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -\frac{1}{3}
\end{array}\right]
$$

Applying the usual procedure for finding the inverse to B we get

$$
\begin{aligned}
& {\left[\begin{array}{lll|lll}
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right] }
\end{aligned} \sim\left[\begin{array}{lll|lll}
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0
\end{array}\right] \quad\left\{\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & -1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & -1 & 0
\end{array}\right] .
$$

Hence

$$
B^{-1}=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
0 & 1 & 0 \\
1 & -1 & 0
\end{array}\right]
$$

so

$$
B^{-1} A^{-1}=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
0 & 1 & 0 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -\frac{1}{3}
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{1}{2} & -1 & -\frac{1}{3} \\
0 & -1 & 0 \\
\frac{1}{2} & 1 & 0
\end{array}\right]
$$

5. (8 points) Consider the following 5×5 matrices:

$$
M=\left[\begin{array}{ccccc}
2 & 5 & \sqrt[5]{3} & 2 & \sqrt{2} \\
-3 & 8 & 3 & -6 & 1 \\
\pi & 52 & e & 3 & 5 \\
\sqrt{3} & 2 & 9 & 4 & 7 \sqrt{13} \\
5 & \pi^{4} & -1 & 3 & 2
\end{array}\right] \quad D=\left[\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 5 & 0 \\
0 & 0 & 0 & 0 & -2
\end{array}\right]
$$

An absolutely horrendous computation shows that M is invertible (You don't need to show this) so you may assume that M^{-1} exists. Define a new matrix $A=M D M^{-1}$. Is A invertible? If so, give a formula for A^{-1} as a product of matrices (You do not need to find an explicit formula for M^{-1}). Be sure to carefully explain your reasoning.

To determine if A is invertible, we must compute it's determinant. Recall from class that $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$. Using this and the fact that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ we have

$$
\operatorname{det}\left(M D M^{-1}\right)=\operatorname{det}(M) \operatorname{det}(D) \operatorname{det}\left(M^{-1}\right)=\operatorname{det}(M) \operatorname{det}(D) \frac{1}{\operatorname{det}(M)}=\operatorname{det}(D)
$$

Since D is a diagonal matrix, we can easily compute it's determinant, $\operatorname{det}(D)=$ $(2)(-1)(3)(5)(-2)=60$, hence A is invertible.

To compute it's inverse we apply shoes and socks to obtain

$$
\left(M D M^{-1}\right)^{-1}=\left(M^{-1}\right)^{-1} D^{-1} M^{-1}=M D^{-1} M^{-1}
$$

