Math 308N

Your Name

Your Signature

Student ID #

Honor Statement

I agree to complete this exam without unauthorized assistance from any person, materials, or device.

Signature: _____

- Turn off all cell phones, pagers, radios, mp3 players, and other similar devices.
- This exam is closed book. You may use one $8.5'' \times 11''$ sheet of handwritten notes (both sides OK). Do not share notes. No photocopied materials are allowed.
- Only the TI 30X IIS calculators is allowed.
- In order to receive credit, you must **show all of your work**. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- If you need more room, use the backs of the pages and indicate that you have done so.
- Raise your hand if you have a question.
- This exam has 7 pages, plus this cover sheet. Please make sure that your exam is complete.

Question	Points	Score
1	24	
2	8	
3	10	
4	10	
5	8	
Total	60	

1. (24 points) Indicate whether the given statement is true or false (1 pts) and give justification as to why it is true or false(2 pts).

a) [4 pts] If S is a subspace of \mathbb{R}^8 and $\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_7\}$ is a basis for S, then for any $\vec{v} \notin S$, span $\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_7, \vec{v}\} = \mathbb{R}^8$.

TRUE. If $\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_7\}$ is a basis for *S*, then $\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_7\}$ is linearly independent. Since $\vec{v} \notin S$, \vec{v} is not in the span of the \vec{u}_i , which means that $\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_7, \vec{v}\}$ is a linearly independent set in \mathbb{R}^8 , hence spans \mathbb{R}^8 .

b) [4 pts] Let B_1, B_2 , and B_3 be bases for \mathbb{R}^n . If C_1 is the change of basis matrix going from B_1 to B_2 , and C_2 is the change of basis matrix going from B_2 to B_3 , then $C_2^{-1}C_1^{-1}$ is the change of basis matrix going from B_3 to B_1 .

FALSE. If C_1 is the change of basis matrix going from B_1 to B_2 , and C_2 is the change of basis matrix going from B_2 to B_3 , then C_2C_1 is the change of basis matrix going from B_1 to B_3 , hence it's inverse goes from B_3 to B_1 . By shoes and socks, the inverse is given by $(C_2C_1)^{-1} = C_1^{-1}C_2^{-1}$.

c) [4 pts] If *W* is a subspace of \mathbb{R}^9 , dim(W) = 3, and $T : \mathbb{R}^9 \to \mathbb{R}^6$ is a linear transformation such that Ker(*T*)=*W*, then *T* must be onto.

TRUE. By the rank-nullity theorem, we know that $\dim(\operatorname{range}(T))+\dim(\ker(T))=9$. Since $\ker(T)=W$ and $\dim(W) = 3$, $\dim(\ker(T))=3$. This means that $\dim(\operatorname{range}(T))+3 = 9$ which implies that $\dim(\operatorname{range}(T))=6$. Since the codomain is \mathbb{R}^6 , $\dim(\operatorname{range}(T))=6$ implies that *T* is onto.

Midterm 2

Give an example of each of the following. If it is not possible write "NOT POSSIBLE", and **give justification as to why**.

g) [2 pt] An $n \times n$ matrix $A \neq I_2$ such that $A^{2018} = I_2$, but $A^k \neq I_2$ for all k < 2018...

Take a rotation matrix for $\theta = \frac{2\pi}{2018}$, this looks like

$$C_{\frac{2\pi}{2018}} = \begin{bmatrix} \cos(\frac{2\pi}{2018}) & -\sin(\frac{2\pi}{2018}) \\ \cos(\frac{2\pi}{2018}) & \sin(\frac{2\pi}{2018}) \end{bmatrix}$$

Since rotating through an angle of $\frac{2\pi}{2018}$, 2018 times will get you back where you started, $(C_{\frac{2\pi}{2018}})^{2018} = I_2$. Note that one can also just say $A = \begin{bmatrix} x & 0 \\ 0 & x \end{bmatrix}$ where $x^{2018} = 1$.

h) [2 pt] A linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ such that range $(T) = \ker(T)$.

Recall from class that when you look at a 2 × 2 matrix, the columns are reading off the image of the standard basis vectors. By rank-nullity, dim(range(*T*))+dim(ker(*T*))= 2, so range(*T*) and ker(*T*) must both be 1-dimensional. Lets pick a subspace and make it work. Picking the *x* or *y* axis will be easiest so lets pick the subspace to be span $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix} \right\}$, the *x*-axis. If I want the range AND kernel to be this subspace, I must send $\begin{bmatrix} 1\\0 \end{bmatrix}$ to $\begin{bmatrix} 0\\0 \end{bmatrix}$, to get the kernel. Moreover, I must send the other vector to $\begin{bmatrix} 1\\0 \end{bmatrix}$, to get the range. The matrix that does this is $\begin{bmatrix} 0&1\\0&0 \end{bmatrix}$. To see it more explicitly, reaiding off from the columns of the matrix shows that e_1 will go to the zero vector, and e_2 will go to e_1 (because column 2 of the matrix is e_1 . Now looking at any arbitrary vector, we can see that any vector of the form $\begin{bmatrix} a\\0 \end{bmatrix}$ will go to the zero vector, and any vector of the form $\begin{bmatrix} 0\\b \end{bmatrix}$. This means that anything on the x-axis goes to zero and anything on the y-axis goes to the x-axis, which is tha same as $ker(T) = range(T) = span\{\begin{bmatrix} 1\\0 \end{bmatrix}$. Note: There are certainly other choices that work and just writing a matrix that works is sufficient for full credit.

i) [2 pts] A basis *B* for \mathbb{R}^3 such that every vector in the basis lies in the set $\left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a+b+2c=0 \right\}$

NOT POSSIBLE. The set $\left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a+b+2c=0 \right\}$ forms a plane in \mathbb{R}^3 . If this set were a basis then it would imply that a plane spans \mathbb{R}^2 but a plane can never span all of \mathbb{R}^3 .

2. (10 points) Consider the matrix A, and it's reduced echelon form below

$$A = \begin{bmatrix} 2 & -6 & 14 & 4 & 18 \\ -1 & 6 & -19 & 4 & -6 \\ -2 & 7 & -18 & 1 & -11 \\ 3 & -8 & 17 & 3 & 18 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -5 & 0 & -4 \\ 0 & 1 & -4 & 0 & -3 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

a) [3 pts] Find a basis for Col(A), the column space of A.

By recipe 2, the pivot columns in the reduced echelon form occur in columns 1,2 and 4, so looking back at matrix *A*, we have that

$$B_{col(A)} = \left\{ \begin{bmatrix} 2\\-1\\-2\\3 \end{bmatrix}, \begin{bmatrix} -6\\6\\7\\-8 \end{bmatrix}, \begin{bmatrix} 4\\4\\1\\3 \end{bmatrix} \right\}$$

b) [3 pts] Find a basis for Null(A), the Null space of A.

Looking at the linear system corresponding to the reduced echelon matrix, we see that the free variables correspond to x_3 and x_5 , so let $x_3 = s_1$ and $x_5 = s_2$. The remaining equations are then

$$x_1 - 5s_1 - 4s_2 = 0; \quad x_2 - 4s_1 - 3s_2 = 0; \quad x_4 + 2s_2 = 0$$

This means that

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 5s_1 + 4s_2 \\ 4s_1 + 3s_2 \\ s_1 \\ -2s_2 \\ s_2 \end{bmatrix} = s_1 \begin{bmatrix} 5 \\ 4 \\ 1 \\ 0 \\ 0 \end{bmatrix} + s_2 \begin{bmatrix} 4 \\ 3 \\ 0 \\ -2 \\ 1 \end{bmatrix}$$
$$B_{Null(A)} = \left\{ \begin{bmatrix} 5 \\ 4 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \\ 0 \\ -2 \\ 1 \end{bmatrix} \right\}$$

so

c) [2 pts] Find a basis for $row(A^T)$, the row space of A^T .

Since the rows of A^T are just the columns of A, $row(A^T) = col(A)$, hence the basis is the same as in part a).

3. (10 points) a) [5 pts] Consider the set $S = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x^2 + y^2 + z^2 \le 1 \right\}$ Determine if *S* is a subspace of

 \mathbb{R}^3 . If it is, carefully show that it is a subspace. If it is not, give justification as to why.

Algebraic Solution: *S* is not a subspace because it isn't closed under scalar multiplication nor vector addition. The easiest way to see this is via scalar multiplication. Given $\vec{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in S$ take any scalar c > 1, then $(cx)^2 + (cy)^2 + (cz)^2 = c^2(x^2 + y^2 + z^2)$ and since $x^2 + y^2 + z^2 \le 1$, $c^2(x^2 + y^2 + z^2) \le c^2 \le 1$. This means that $c\vec{v} \notin S$, so *S* is not a subspace. *S* is also not closed under vector addition, as can easily be seen by considering (among others) the vectors $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$. Both are in *S* but their vector sum is not.

Geometric Solution: *S* is a sphere of radius 1 in \mathbb{R}^3 . Since any vector whose tip is on the boundary of the sphere can be scaled to strech outside of the sphere, a scaled version of any vector in *S* will not necessarily remain in *S*.

b) [5 pts] Let *A* be an non-zero $n \times n$ matrix and consider the set $S = \left\{ x \in \mathbb{R}^n : A\vec{x} = \vec{x} \right\}$. That is, for some fixed matrix *A*, *S* consists of all vectors in \mathbb{R}^n that are fixed by *A*. Show that *S* is a subspace of \mathbb{R}^n . (Note: You may use the definition or any theorems from class.)

Solution 1: Recall that for any matrix *A*, Null(*A*) is automatically a subspace. Keeping this fact in mind, we can see that if $A\vec{x} = \vec{x}$, then $A\vec{x} - I_n\vec{x} = (A - I_n)\vec{x} = \vec{0}$. This means that $S = \text{Null}(A - I_n)$. Since *S* is the nullspace of some matrix, it is a subspace.

Solution 2: We check the 3 subspace conditions starting with the first. It's easy to see that $\vec{0} \in S$ because $A\vec{0} = \vec{0}$.

Now let $\vec{x} \in S$ and let *c* be a scalar. Then

$$Ac\vec{x} = c(A\vec{x}) = c(\vec{x}) = c\vec{x}$$

so $c\vec{x} \in S$ and S is closed under scalar multiplication. Lastly, let $\vec{x}, \vec{y} \in S$. This means that $A\vec{x} = \vec{x}$ and $A\vec{y} = \vec{y}$, since A is linear, we have

$$A(\vec{x} + \vec{y}) = A\vec{x} + A\vec{y} = \vec{x} + \vec{y}$$

hence $\vec{x} + \vec{y} \in S$, and *S* is closed under vector addition.

c)[4pts] Given the set *S* from part b), find a basis of *S* for the matrix $A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$

We will approach this problem from the nullspace perspective but mention that one can solve this by letting $\vec{x} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ be an arbitrary and writing out equations in terms of *a*,*b*, and *c*, then solving.

Since $S = Null(A - I_n)$, here we have n = 3 and

	[0]	1	1]		Γ1	0	0]		-1	1	1]	
$A-I_3 =$	0	1	0	_	0	1	0	=	0	0	0	
	1	0	1		0	0	1		1	0	0	

The linear system this corresponds to is given by

 $-x_1 + x_2 + x_3 = 0$ and $x_1 = 0$

This means that x_3 is free, hence $x_3 = s$ and $x_2 = -s$. Since $S = \text{Null}(A - I_3)$, a basis for S is just a basis for this null space. We can now see that any vector in this null space has the form

 $B_S = \left\{ \begin{bmatrix} 0\\-1\\1 \end{bmatrix} \right\}$

4. (10 points) a) [5 pts] Define linear transformations $T_A : \mathbb{R}^3 \to \mathbb{R}^3$, $S_B : \mathbb{R}^3 \to \mathbb{R}^3$, and $R = (T \circ S) : \mathbb{R}^3 \to \mathbb{R}^3$ with $T_A(\vec{x}) = A\vec{x}$ and $S_B(\vec{x}) = B\vec{x}$ for $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -3 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$. Show that *T* and *S* are invertible. (Note: Even though matrix *B* is the same as in the previous problem, they are unrelated.)

T and *S* are invertible $\Leftrightarrow \det(A) \neq 0$ and $\det(B) \neq 0$. It's easy to see that $\det(A) = (2)(-1)(3) = -6$, and computing the cofactor expansion along the first column shows that $\det(B) = 1(-1) = -1$, hence *T* and *S* are invertible.

b) [5 pts] Determine a matrix *C* such that $R^{-1}(\vec{x}) = (T \circ S)^{-1}(\vec{x}) = C\vec{x}$.

Since matrix multiplication and function composition are the same, $(T \circ S)\vec{x} = AB\vec{x}$. This means that $(T \circ S)^{-1}$ has associated matrix $(AB)^{-1} = B^{-1}A^{-1}$, and this is the matrix we must find. Since the product of diagonal matrices is just the product of diagonal entries, we can easily see that

$$\mathbf{A}^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -\frac{1}{3} \end{bmatrix}$$

Applying the usual procedure for finding the inverse to B we get

	[()	1	1	1	0	0		1	0	1	0	0	1	
	()	1	0	0	1	0	\sim	0	1	0	0	1	0	
		1	0	1	0	0	1		0	1	1	1	0	0	
	1	0	1	0)	0	1 -		[1]	0	0	_	1	1	1
\sim	0	1	0	0)	1	0	\sim	0	1	0	0)	1	0
	0	0	1	1		-1	0		0	0	1	1		-1	0

Hence

$$B^{-1} = \begin{bmatrix} -1 & 1 & 1\\ 0 & 1 & 0\\ 1 & -1 & 0 \end{bmatrix}$$

so

$$B^{-1}A^{-1} = \begin{bmatrix} -1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -\frac{1}{3} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & -1 & -\frac{1}{3} \\ 0 & -1 & 0 \\ \frac{1}{2} & 1 & 0 \end{bmatrix}$$

5. (8 points) Consider the following 5×5 matrices:

$$M = \begin{bmatrix} 2 & 5 & \sqrt[5]{3} & 2 & \sqrt{2} \\ -3 & 8 & 3 & -6 & 1 \\ \pi & 52 & e & 3 & 5 \\ \sqrt{3} & 2 & 9 & 4 & 7\sqrt{13} \\ 5 & \pi^4 & -1 & 3 & 2 \end{bmatrix} \qquad D = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & -2 \end{bmatrix}$$

An absolutely horrendous computation shows that M is invertible (You don't need to show this) so you may assume that M^{-1} exists. Define a new matrix $A = MDM^{-1}$. Is A invertible? If so, give a formula for A^{-1} as a product of matrices (You do **not** need to find an explicit formula for M^{-1}). Be sure to carefully explain your reasoning.

To determine if A is invertible, we must compute it's determinant. Recall from class that $det(A^{-1}) = \frac{1}{det(A)}$. Using this and the fact that det(AB) = det(A)det(B) we have

$$det(MDM^{-1}) = det(M)det(D)det(M^{-1}) = det(M)det(D)\frac{1}{det(M)} = det(D)$$

Since D is a diagonal matrix, we can easily compute it's determinant, det(D) = (2)(-1)(3)(5)(-2) = 60, hence A is invertible.

To compute it's inverse we apply shoes and socks to obtain

$$(MDM^{-1})^{-1} = (M^{-1})^{-1}D^{-1}M^{-1} = MD^{-1}M^{-1}$$